Density Waves Instability and a Skyrmion Lattice on the Surface of Strong Topological Insulators

Yuval Baum and Ady Stern

Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

The gapless surface states of strong topological insulators have drawn a great deal of attention over the past few years. In a previous work [1] it was shown that for a strong enough electron-electron interaction the surface of a strong topological insulator is unstable to the formation of spontaneous uniform magnetization.

In this work [2] we analyzed the instability conditions for spin-density-waves (SDW) formation on the surface of strong topological insulators. We find that for a certain range of energies the SDW instability is favored compared to the uniform one. We also find that the SDW are of spiral nature and for a certain range of parameters a Skyrmion-lattice is formed on the surface. We show that this phase may have a non trivial Chern-number even in the absence of an external magnetic field. Finally, we claim that a network of one-dimensional chiral channels may be established on the surface of a strong topological insulator.

- [1] Y. Baum and A. Stern, Phys. Rev. B 85, 121105(R)(2012).
- [2] Y. Baum and A. Stern, Phys. Rev. B 86, 195116 (2012).