
Quantum Hall Effect in Graphene with Superconducting Electrodes

P. Rickhaus, M. Weiss, L. Marot, and C. Schönenberger

Department of Physics, University of Basel, Switzerland

We have realized an integer quantum Hall system with superconducting contacts by connecting graphene to niobium electrodes[1]. Below their upper critical field of 4 tesla, an integer quantum Hall effect coexists with superconductivity in the leads, but with a plateau conductance that is larger than in the normal state. We ascribe this enhanced quantum Hall plateau conductance to Andreev processes at the graphene-superconductor interface leading to the formation of so-called Andreev edge-states. The enhancement depends strongly on the filling-factor, and is less pronounced on the first plateau, due to the special nature of the zero energy Landau level in monolayer graphene.

left: Conductance G as a function of magnetic field and gate voltage. middle: SEM picture of a typical device (top), quasiclassical illustration of chiral edge states along the sample border and an Andreev edge state along the N-S interface (bottom). right: conductance as a function of B for fixed filling factors ν =2,6, and 10.

[1] P. Rickhaus, M. Weiss, L. Marot, and C. Schönenberger, NanoLetters 12, 1942 (2012)