Method of Constructing Trial Wavefunctions for Quantum Hall States

J. J. Quinn

Department of Physics, University of Tennessee, Knoxville, Tennessee 37996, USA

Numerical studies indicate that incompressible quantum Hall states occur when the relation between the single particle angular momentum ℓ and the number N of electrons in the partially filled Landau level is $2\ell = v^{-1}N - c_v$. Here, v is the filling factor and c_v is a "finite size shift". The values of c_v found numerically depend on correlations, and for v = n/q < 1/2 are given by $c_v = q + 1 - n$. This finite size shift points the way to constructing electronic trial wavefunctions. A trial wavefunction can always be written $\Psi = FG$, where $F = \prod_{i < j} z_{ij}$ and $G(z_{ii})$ is a symmetric correlation function caused by interactions. For the Moore-Read state, $G_{MR}(z_{ij})$ is a product of F and the antisymmetric Pfaffian. Another choice is the quadratic function, $G_Q = S\{\prod_{i \le j \in gl} \prod_{k \le l \in g2} (z_{ij}z_{kl})^2\}$, where S is a symmetrizing operator, and g_1 and g_2 each contain N/2 particles resulting from a partition of N into two sets. For the Jain states with v = n/q < 1/2, the N particles can be partitioned into n subsets, $g_1, g_2, ..., g_n$, each containing two particles more than the preceding one. For example, for n = 3, g_1 ; g_2 , and g_3 contain N/3 – 2, N/3, and N/3 + 2 electrons, respectively. Choosing different correlations among particles within different subsets, and between particles belonging to different subsets can result in the maximum power of z_i in the antisymmetric wavefunction equal to $2\ell = v^{-1}N - c_v$, with $c_v = q + 1 - n$. The choice of correlation functions is not necessarily unique. Exact diagonalization studies of small systems are being carried out to compare different choices.