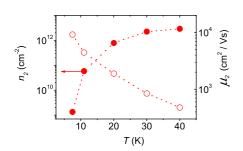
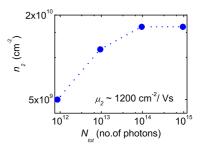
Thursday

Thermally and optically excited multi-channel transport at the interface of LaAlO₃/SrTiO₃ heterostructures


V. K. Guduru¹, A. McCollam¹, A. Granados del Aguila¹, S. Wenderich², A. Jost¹, M. K. Kruize², P. C. M. Christianen¹, G. Rijnders², A. Brinkman², H. Hilgenkamp², J. C. Maan¹ and U. Zeitler¹

- ¹ High Field Magnet Laboratory and IMM, Radboud University Nijmegen, NL.
- ² MESA+ Institute for Nanotechnology, University of Twente, Enschede, NL.


We have performed magnetotransport experiments on a LaAlO $_3$ /SrTiO $_3$ interface [1] with a 10 nm LaAlO $_3$ film, in magnetic fields up to 30 T. The temperature was varied in the range $T=4.2~\mathrm{K}$ to 150 K and additionally the sample was illuminated with UV radiation at a fixed $T=4.2~\mathrm{K}$.

Our experimental results show that the low-temperature regime (T \leq 4.2 K) is dominated by one type of charge carriers, $n_1 \simeq 10^{14}~\rm cm^{-2}$, with a lower carrier mobility, $\mu_1 \simeq 5~\rm cm^2/Vs$, yielding a linear Hall resistance. Increasing T above 4.2 K or illuminating with UV light with an energy higher than the SrTiO₃ band-gap (3.65 eV) at a fixed T=4.2 K, leads to a significant decrease of the resistance, a strong positive magnetoresistance appears and the Hall resistance becomes distinctly non-linear. We explain our observations by thermal or optical excitation of an additional high-mobility electron channel situated 6 meV above the low-mobility channel.

Our magnetotransport data can be quantitatively explained within a simple two-carrier model, where thermal activation (Fig. a) or UV illumination (Fig. b) creates a low-concentration (n_2) and high-mobility (μ_2) electron channel [2], in addition to an existing low-mobility one at 4.2 K. The carrier concentration and the mobility values of this second-electronic channel are extracted from a two-band model fits of the magnetoresistance and the non-linear Hall resistance.

(a) Concentration (left axis, filled circles) and mobility (right axis, open circles) of thermally activated high-mobility electron channel as a function of temperature.

(b) Concentration (filled circles) of the photo-excited carriers as a function of illumination intensity expressed in terms of the photon number, N_{tot} , at 4.2 K.

- [1] A. Ohtomo and H. Y. Hwang, Nature **427**, 423 (2004).
- [2] V. K. Guduru et al., Appl. Phys. Lett. 102, 051604 (2013).