Two-phonon scattering in graphene in the quantum Hall regime

A. M. Alexeev and M. E. Portnoi

School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK

One of the most distinctive features of graphene is its huge inter-Landau-level splitting in experimentally attainable magnetic fields resulting in the room-temperature quantum Hall effect. We have calculated the longitudinal conductivity due to two-phonon scattering in graphene in a quantizing magnetic field over a broad range of temperatures. The multiphonon scattering mechanism [1] is known to be negligible for conventional two-dimensional systems under the quantum Hall conditions apart from exotic cases such as magneto-roton dissociation in phonon spectroscopy [2]. However, our calculations show that this mechanism dominates in the high-temperature quantum Hall regime in graphene, since at elevated temperatures the energy of an acoustic phonon with a wavevector comparable to the inverse magnetic length is much smaller than the temperature; therefore, a number of such phonons Single-phonon processes in pristine graphene in this regime remain increases drastically. suppressed due to momentum and energy conservation requirements. We show that the twophonon scattering mechanism provides a significant error in Hall conductivity measurements, and it is therefore a major obstacle in using graphene as a room-temperature quantum Hall standard of resistance.

- [1] V. N. Golovach and M. E. Portnoi, Phys. Rev. B 74, 085321 (2006).
- [2] V. M. Apalkov and M. E. Portnoi, Phys. Rev. B 66, 121303 (2002).