Transport on the surface of a topological insulator

V. Vargiamidis*, P. Vasilopoulos*, and Marcos R. S. Tavares**

*Department of Physics, Concordia University, 7141 Sherbrooke West, Montreal, Quebec, Canada H4B 1R6

**Centro de Ciéncias Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-170, Brazil

We evaluate the dc and ac conductivities of a two-dimensional topological insulator including a mass term m_z in its Hamiltonian¹. Starting with a Kubo formula we derive an expression for the dc Hall conductivity σ_{yx} valid for finite temperatures using the analytically derived eigenfunctions and eigenvalues. At zero temperature this expression gives the dc half-quantum Hall conductivity¹, $\sigma_{yx} = (m_z/|m_z|)(e^2/2h)$ in the absence of a magnetic field. Corrections due to scattering by impurities are taken into account. The longitudinal component σ_{xx} is evaluated as well. Further, we evaluate these conductivities for finite frequencies ω and show that in addition to a Drude term we have logarithmic, frequency-dependent corrections. We also evaluate the power absorption spectrum $P(\omega)$, pertinent to optical experiments, using the linear-response expression $P(\omega) = (E^2/2) \times Re\{\sigma_{xx}(\omega) + \sigma_{yy}(\omega) + i\sigma_{yx}(\omega) - i\sigma_{xy}(\omega)\}$ with E the electric field of light. The sum $\sigma_{xx}(\omega) + \sigma_{yy}(\omega) = 2\sigma_{xx}(\omega)$ varies as $(E_F^2 - m_z^2)\tau/[\hbar E_F(1+\omega^2\tau^2)]$ whereas the real part of $i\sigma_{yx}(\omega) = -i\sigma_{xy}(\omega)$ surges upward at a frequency $\omega = 2lm_z l/\hbar$ and its imaginary part drops drastically, see Fig. 1(a). Accordingly, as shown in Fig. 1(b), $P(\omega)$ increases very sharply at this frequency.

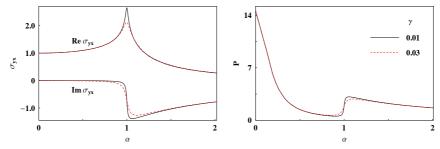


Fig. 1. Left panel. The real (upper) and imaginary (lower) part of $\sigma_{yx}(\omega)$ versus $\alpha=\hbar\omega/2|m_z|$ in units of $e^2/2h$. The solid (dashed) curves are for $\gamma=0.01$ ($\gamma=0.03$), $\gamma=\Gamma/2|m_z|$. Notice its dc limit $\sigma_{yx}(0)=e^2/2h$. Right panel. Power spectrum $P(\omega)$ vs α , in units of $E^2e^2/2h$, for two values of γ with Γ the width of the energy levels, a relaxation time $\tau=10^{-13}$ s, a Fermi level $E_F=100$ meV, and $m_z=0.2E_F$.

1. X.-L. Qi et al., Rev. Mod. Phys. 83, 1057 (2011).