Universal behavior of the magnon gaps in doped quasi-2D antiferromagnets

M. Fidrysiak

Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland

Many cuprate compounds at low doping exhibit long-range antiferromagnetic (AF) order, e.g., $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ (LSCO). In the Néel phase these materials can be effectively described as anisotropic quasi-2D Heisenberg antiferromagnets, where holes are represented by dipole fields linearly coupled to the background magnetization current. Small Dzyaloshinskii-Moriya (DM) and XY anisotropies are responsible for opening of the magnon gaps which in LSCO rapidly decrease with doping and close at the AF phase boundary $x_c \sim 0.02$.

Within the framework of the anisotropic quantum non-linear σ -model (QNL σ M) we calculate doping dependence of the magnon gaps and obtain a good agreement with experiments on LSCO. It is shown that the reduction of the magnon gaps relative to their x=0 value weakly depends on the anisotropies of the parent compound. Since the DM gap is highly sensitive to rare-earth element doping, this prediction could be tested on La_{2-x-y}Eu_ySr_xCuO₄ (LESCO) and La_{2-x-y}Nd_ySr_xCuO₄ (LNSCO).