Spin-Droplet State of an Interacting 2D Electron System

N. Teneh¹, A. Yu. Kuntsevich², V. M. Pudalov^{2,3} and M. Reznikov¹

¹Solid State Institute, Technion, Haifa 32000, Israel
² P.N. Lebedev Physical Institute, Moscow, 119991 Russia
³ Moscow Institute of Physics and Technology, Moscow, 141700, Russia

We report thermodynamic magnetization measurements of two-dimensional electrons in several high mobility Si metal-oxide-semiconductor field-effect transistors. We provide evidence for an easily polarizable electron state in a wide density range from insulating to deep into the metallic phase [1]. The temperature and magnetic field dependence of the magnetization is consistent with the formation of large-spin droplets in the insulating phase. These droplets melt in the metallic phase with increasing density and temperature, although they survive up to large densities.

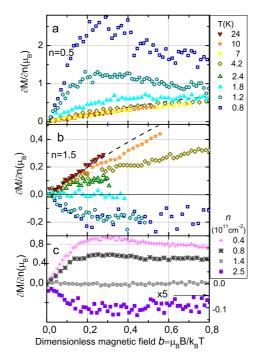


Figure 1: Panel (a): $\partial M/\partial n$ vs normalized magnetic field $b=\mu_B B/k_B T$ at $n=0.5\times 10^{11} {\rm cm}^{-2}$ (insulating phase). We subtracted the diamagnetic contribution estimated from the high-temperature data, $\sim 0.04 \mu_B$ per tesla [2]. Panel (b): the same as panel (a) at $n=1.5\times 10^{11} {\rm cm}^{-2}$ (metallic phase); the subtracted diamagnetic contribution is $\approx 0.035 \mu_B$ per tesla. Dashed lines in (a) and (b) show $\partial M/\partial n$ for localized spins 1/2. Panel (c) $\partial M/\partial n$ vs b at different densities at $T=1.8{\rm K}$. Note that $\partial M/\partial n(b)$ becomes nonlinear at the density and temperature independent b^* .

N. Teneh, A. Yu. Kuntsevich, V. M. Pudalov, M. Reznikov, Phys. Rev. Lett. 109, 226403 (2012).

^[2] M. Reznikov, A. Yu. Kuntsevich, N. Teneh, V. M. Pudalov, JETP Lett. 92, 470 (2010).