Resistive read-out of nuclear spin signals from a single quantum dot under the Kondo effect regime

Minoru Kawamura ¹, Daniel Gottwald ¹, Keiji Ono ¹, Tomoki Machida ^{2, 3} and Kimitoshi Kono ¹

¹ RIKEN, Japan
² Institute of Industrial Science, University of Tokyo, Japan
³ Institute for Nano Quantum Information Electronics, University of Tokyo, Japan

We study dynamic polarization and resistive detection of nuclear spins in a single quantum dot (QD) under the Kondo effect regime. We find that the differential conductance $dI/dV_{\rm sd}$ spectra of the QD exhibit remarkable hysteresis under the Kondo effect regime in magnetic fields when the bias voltage $V_{\rm sd}$ is scanned in the positive and negative directions (Fig. 1a). We also find that $dI/dV_{\rm sd}$ increases slowly under a fixed $V_{\rm sd}$ where the hysteresis is observed. Relevance of nuclear spins to the hysteresis and the slow increase in $dI/dV_{\rm sd}$ is unambiguously confirmed by the detection of nuclear magnetic resonance signals by monitoring $dI/dV_{\rm sd}$ under the irradiation of rf-magnetic fields. We attribute the origin of the hysteresis to the dynamic nuclear spin polarization (DNP) in the QD. Because the DNP develops during the scans of $V_{\rm sd}$ in the $dI/dV_{\rm sd}-V_{\rm sd}$ measurement, the resultant difference in the effective magnetic field causes the hysteresis in the $dI/dV_{\rm sd}-V_{\rm sd}$ curves.

Impact of the newly developed technique for the dynamic polarization and resistive detection of nuclear spins is further emphasized by the following nuclear spin relaxation rate $1/T_1$ measurement. Because $1/T_1$ is enhanced by the electron spin fluctuation, electron spin dynamics in the QD can be studied through the $1/T_1$ measurement. We find that the value of $1/T_1$ suppressed at around $V_{\rm sd} = 0~\mu \rm V$ increases steeply with increasing $V_{\rm sd}$, suggesting a biasvoltage-driven crossover from a spin-fixed state to a spin-fluctuating state (Fig. 1b). The crossover is one of unique features of the non-equilibrium Kondo effect under a magnetic field and is directly observed for the first time in the present study [1].

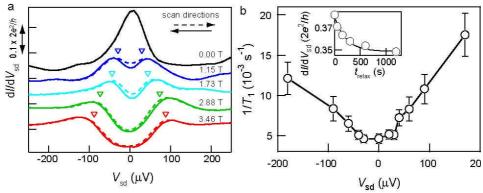


FIG. 1: (a) Differential conductance spectra of a QD under Kondo effect regime under variou magnetic fields. The curves are offset for clarity. (b) Bias voltage dependence of nuclear spi relaxation rate at B = 2.88 T. Inset shows a representative nuclear spin relaxation curve.