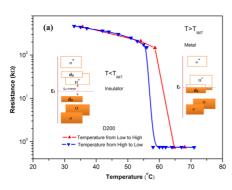
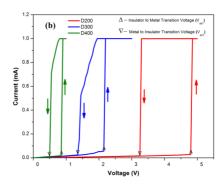
Thursday

Annealing induced modulation of joule heating based metal-insulator transition point of VO₂ nanobeams for smart nanodevice applications


S. Rathi¹, Jinhyung Park¹, Inyeal Lee¹, Min Jin Kim², Jeong Min Baik², Kyung Soo Yi³ and Gil-Ho Kim¹


Department of Electronic and Electrical Engineering and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-805, Korea
Department of Physics, Pusan National University, Busan 609-735, Republic of Korea

Of all correlated transition metal oxides, vanadium dioxide (VO_2), transition temperature (T_{IMT}), at which transition from insulator to metal phase (IMT) occurs, is closest to room-temperature (67 $^{\circ}C$), which makes this material interesting for potential technological applications including sensors and memristors.[1]

Joule heating based transition is one of the simple and common method to induce IMT in VO_2 nanobeams (NBs).[2] However, the voltage at which Insulator to Metal Transition (V_{IMT}) occurs is susceptible to processing and fabricating conditions, though its accurate determination and control is at the heart of devices like sensors and switches based on VO_2 .

In this work, the effect of annealing conditions on VO_2 NBs having average width of 300 nm, have been studied through voltage and temperature induced hysteretic plots, Fig.1. Our analysis shows that annealing conditions have a profound impact on the V_{IMT} values through a simultaneous variation in both NBs conductivity and T_{IMT} values. The results obtained were also confirmed by a mathematical model. These variations in V_{IMT} and T_{IMT} are possibly due to oxygen deficiency induced monoclinic lattice defect and doping behavior of oxygen vacancies in the resulting nonstoichiometric VO_2 NBs. These finding can be very useful for device engineers who can not only control V_{IMT} point, albeit at the cost of minor trade-off (variation in conductivity and T_{IMT} point), but can also scale down voltage supply for prospective low-voltage sensors applications.

Fig. 1. (a) Temperature hysteretic plot of VO₂ NB, annealed at 200 °C, 1 minute in Argon ambient. [inset showing energy band diagrams in insulating and metallic phase], (b) Variation in V_{IMT} point of VO₂ nanobeams following Rapid Thermal Annealing (RTA) at 200 °C (D200), 300 °C (D300), 400 °C (D400) in Argon ambient for 1 minute, with compliance set at 1.0 mA to avoid thermal breakdown.

^[1] Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).

^[2] J. W. Byon, et al. Jour. Phy. Chem. C. 116, 226 (2012).