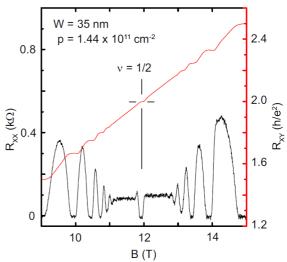
Even-denominator $v = \frac{1}{2}$ Fractional Quantum Hall Effect in GaAs 2D Hole Systems


Yang Liu¹, S. Hasdemir¹, A.L. Graninger¹, M. Shayegan¹, L.N. Pfeiffer¹, K.W. West¹, K.W. Baldwin¹ and R. Winkler²

¹Department of Electrical Engineering, Princeton University, Princeton, New Jersey, USA ²Department of Physics, Northern Illinois University, Dekalb, Illinois, USA

When electrons at sufficiently high density are confined to a high-quality *wide* GaAs quantum-well, they occupy two electric subbands and possess a bilayer-like charge distribution. Under appropriate conditions, the additional layer and/or subband degree of freedom stabilizes a special fractional quantum Hall state (FQHS) at the *even-denominator* Landau level filling factor $v = \frac{1}{2}$ [1,2]. This state is generally believed to be the two-

component Halperin (331) state, a FQHS with strong inter-layer and intra-layer correlations. Although the $v=\frac{1}{2}$ state was discovered over 20 only years ago, its observation has been only reported in high quality GaAs electron systems [1-5].

Here we report the first observation of the $v = \frac{1}{2}$ FQHS in GaAs hole systems. Figure 1 shows the longitudinal and Hall resistances measured symmetric 35-nm-wide GaAs quantum well at density p = 1.44 x 10^{11} cm⁻². At filling factor v = 1/2, we observe a strong minimum in R_{xx} and a clear plateau in R_{xy} quantized at $2h/e^2$. As a function of density, we observe an evolution of the $v = \frac{1}{2}$ FQHS which is qualitatively similar to that of the electron systems: the FQHS is only

Fig. 1. Longitudinal (R_{xx}) and Hall (R_{xy}) resistances taken from a 2D hole system in a symmetric 35-nm-wide GaAs quantum well.

observed at intermediate densities; the system becomes metallic at low densities, and insulating at very high densities [2,3]. However, we also observe an unexpectedly strong $v = \frac{1}{2}$ FQHS which is unique to 2D hole systems.

We discuss the results of our study, carried out as a function of both density and quantum well width, in light of the very complex and rich band structure of GaAs 2D holes.

- [1] Y.W. Suen, L.W. Engel, M.B. Santos, M. Shayegan, and D. Tsui, Phys. Rev. Lett. 68, 1379 (1992).
- [2] Y.W. Suen, H.C. Manoharan, X. Ying, M.B. Santos, M. Shayegan, Phys. Rev. Lett. 72, 3405 (1994).
- [3] H.C. Manoharan, Y.W. Suen, M.B. Santos, M. Shayegan, Phys. Rev. Lett. 77, 1813 (1996).
- [4] D. Luhman, W. Pan, D.C. Tsui, L.N. Pfeiffer, K.W. West and K.W. Baldwin, Phys. Rev. Lett. 101, 266804 (2008).
- [5] J. Shabani, T. Gokman, and M. Shayegan, Phys. Rev. Lett. 103, 046805 (2009).