Modulation of 0.7 and Zero Bias Anomalies in a Quantum Point Contact controlled by Scanning Gate Microscopy

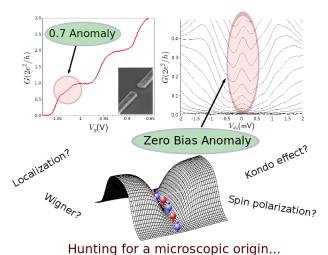
```
B. Brun <sup>1</sup>, F. Martins <sup>2</sup>, S. Faniel <sup>2</sup>, B. Hackens <sup>2</sup>, V. Bayot <sup>2</sup>, D. Mailly <sup>4</sup>, U. Gennser <sup>4</sup>, S. Huant <sup>1</sup>, M. Sanquer <sup>3</sup>, H. Sellier <sup>1</sup>
```

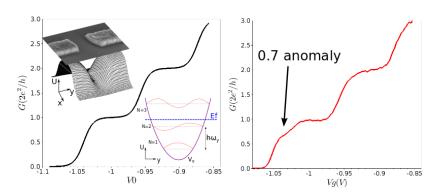
¹Institut Néel (CNRS/UJF), Grenoble (France)

²IMCN/NAPS (UCL), Louvain-la-Neuve (Belgium)

³Institut Nanosciences et Cryogénie (CEA), Grenoble (France)

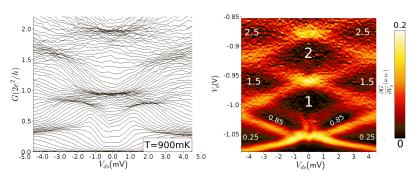
⁴Laboratoire de Photonique et de Nanostructures (CNRS), Marcoussis (France)




2013, July 2nd

Interactions effects in QPCs:

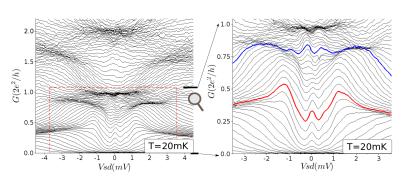
Linear transport



See also: K. J. Thomas, Phys. Rev. Lett. **77** (1996) A. P. Micolich, J. Phys.: Condens. Matter **23** (2011)

Non linear tranport at 900 mK

The 0.7 anomaly becomes more prominent under small DC polarization:


- Measurements are performed in a dilution fridge, down to the base temperature of 20 mK
- \bigcap F_{F_i} Differential conductance G is measured by applying a $10\mu V$ AC voltage

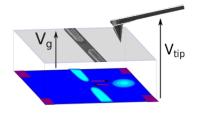
Non linear tranport at 20 mK

The Zero Bias Anomaly is clearly visible below 500 mK:

...and splits as the QPC opens:

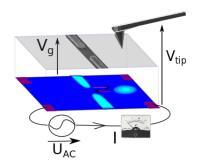
See also: S. M. Cronenwett et al., Phys. Rev. Lett. 88 (2002) for Kondo scaling. Y. Komijani et al., Phys. Rev. B 87 (2013) for ZBA splitting.

Principle of Scanning Gate Microscopy



 A negatively charged AFM tip is scanned above the sample surface.

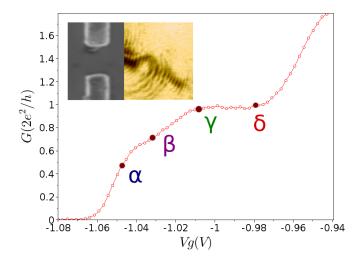
Principle of Scanning Gate Microscopy



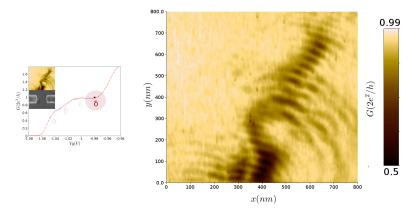
- A negatively charged AFM tip is scanned above the sample surface.
- This creates a depletion region below the tip, and modifies the potential landscape in the 2DEG.

Principle of Scanning Gate Microscopy

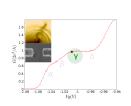
- A negatively charged AFM tip is scanned above the sample surface.
- This creates a depletion region below the tip, and modifies the potential landscape in the 2DEG.

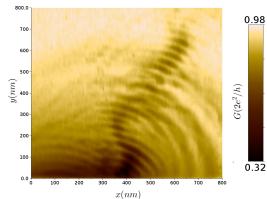

We record the device conductance w.r.t. the tip position G(x, y).

See also: M. A. Topinka et al., Nature 410 (2001).
 R. Crook et al., Science, 312 (2006).
 A. A. Kozikov et al., New. J. Phys. 15 (2013)



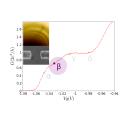
Overview

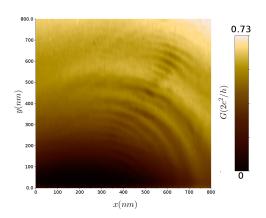

On the plateau, SGM images exhibit a branched electron flow decorated with interferences fringes spaced by $\frac{\lambda_F}{2}$



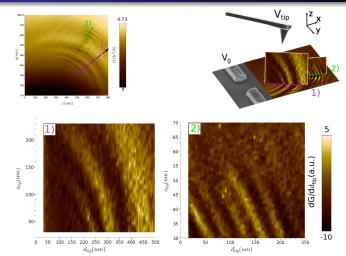
See also: M. P. Jura et al., Nature Physics 3 (2007)

Cross-talk

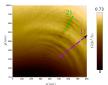


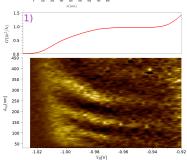


New concentric rings



Below the first plateau, a new type of fringes can be observed, with increasing spacing.


Tip height dependance

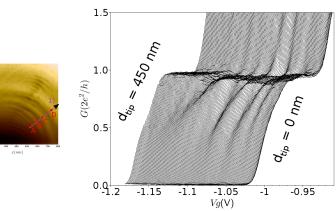


ightarrow Concentric rings are not interferences, but direct electrostatic tuning of the channel potential

Evolution with QPC opening

The interferences are more contrasted on plateaus whereas rings are visible only below the first plateau.

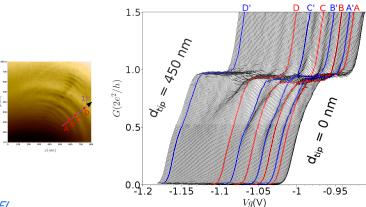
VÉEL


Along purple line 1)

Along green line 2)

Modulation the 0.7 anomaly

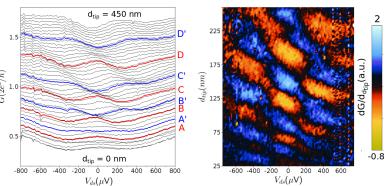
The concentric rings correspond to an alternating modulation of the 0.7 anomaly:



See also: M. J. Iqbal et al., J. Appl. Phys. 113, 024507 (2013)

Modulation the 0.7 anomaly

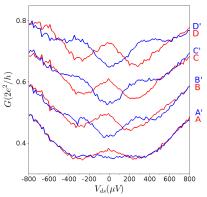
The concentric rings correspond to a periodic modulation of the 0.7 anomaly:

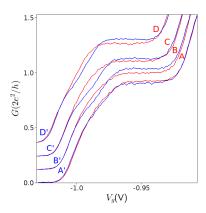


See also: M. J. Iqbal et al., J. Appl. Phys. $\bf 113$, 024507 (2013)

Modulation the ZBA

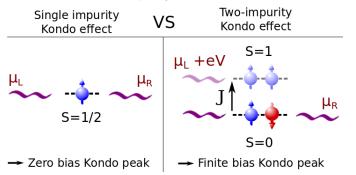
The rings also correspond to a periodic splitting of the ZBA:

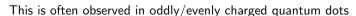




Correlation

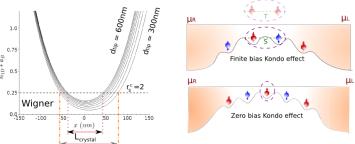
The modulation of 0.7 and ZBA are simultaneous:





Two impurity Kondo effect

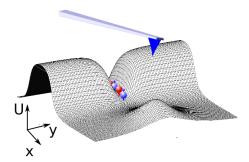
The splitting of the zero bias Kondo peak can be explained in terms of two-impurity Kondo effect


S. Sasaki et al., Nature 405, 764 (2000)

Possible 1d Wigner crystallization

At low density, Coulomb interactions overcome kinetic energy, and can induce localization in the 1d channel:

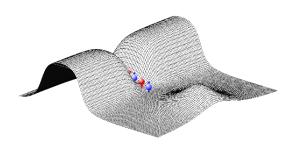
The tip can modify the number of charges

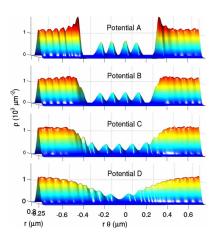


A. D. Guçlu et al., Phys. Rev. B 80, 201302(R) (2009)

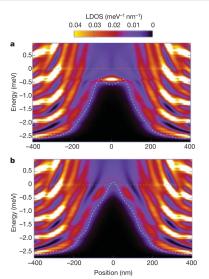
See also: T. Rejec and Y. Meir, Nature 442, 900 (2006)

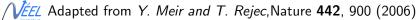
Conclusion


- 0.7 and Zero Bias Anomalies in QPCs are investigated by SGM.
- This unveils an alternation between single and two-particle Kondo effects.
- We interpret it as a tiny Wigner crystal containing odd or even number of charges, depending on tip position.



Thank you for your attention!





Adapted from *A. D. Güçlü et al.*, Phys. Rev. B **80**, 201302R (2009)

