BROKEN TRANSLATION SYMMETRY AND EDGE STATES

A. Matulis

Semiconductor Physics Institute, Center of Physical Sciences and Technology Goštauto 11,

Institute of Theoretical Physics and Astronomy, Vilnius University Goštauto 12, LT-01108, Vilnius, Lithuania

PURPOSE Illustration of the interplay of Edge State and Translation

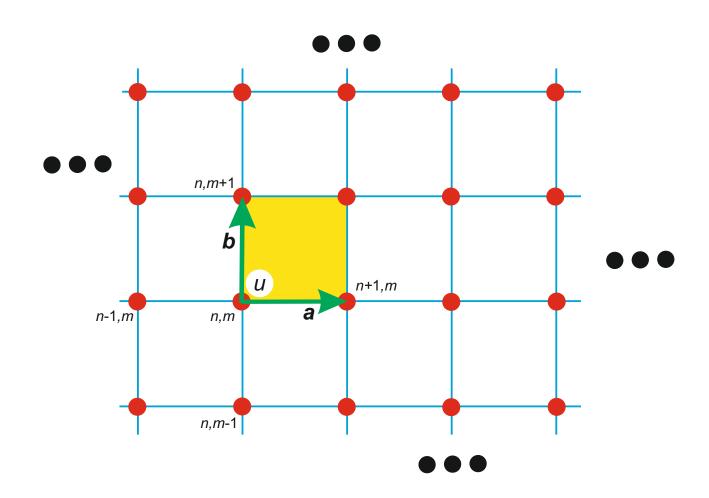
PROBLEMS:

 $2D \rightarrow 1D$

Bethe Ansatz for 1D

Properties

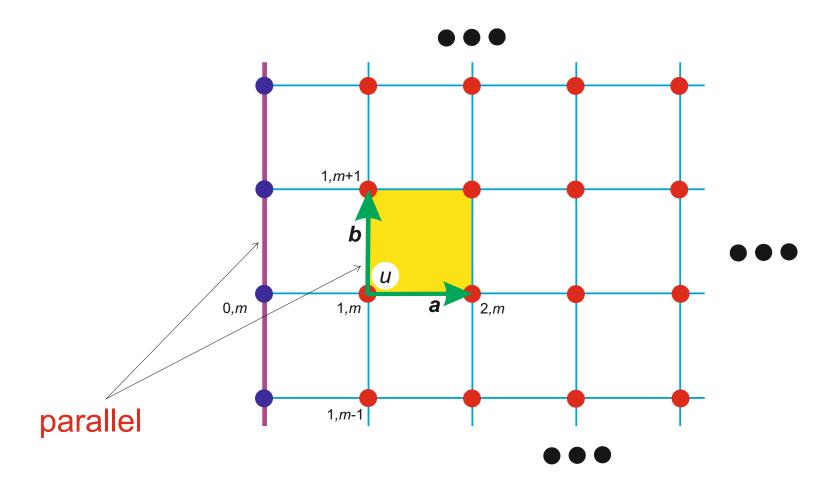
MODEL



TBM:

$$Eu_{n,m} = -(u_{n+1,m} + u_{n-1,m} + u_{n,m+1} + u_{n,m-1})$$

MOST SYMMETRIC EDGE



$$Eu_{n,m} = -(u_{n+1,m} + u_{n-1,m} + u_{n,m+1} + u_{n,m-1}), \quad n \geqslant 1$$

Boundary condition: $(E - U)u_{0,m} = -u_{1,m} - s(u_{0,m+1} + u_{0,m-1})$

$2D \rightarrow 1D$

Translation operator along the edge $Tu_{n,m} = u_{n,m+1}$ It's eigenfunction $\exp(iqm)$

Solution of 2D lattice problem $u_{n,m} = \exp(iqm)u_n$

Effective 1D chain problem

$$egin{aligned} \left[E - U^{ ext{eff}}(q)
ight] u_n &= - \left(u_{n+1} + u_{n-1}
ight), & n \geqslant 1; & U^{ ext{eff}}(q) = -2 \cos q \ \left[E - U^{ ext{eff}}(q) - U_0(q)
ight] u_0 &= -u_1, & U_0(q) = U + (1-s)U^{ ext{eff}}(q) \end{aligned}$$

BETHE ANSATZ

1D edge state probem

Eq.:
$$Eu_n = -(u_{n+1} + u_{n-1}), \quad n \geqslant 1$$

B.c.:
$$(E - U) u_0 = -u_1$$

Eq. can be satisfied with $u_n = \exp(ikn)$ what leads to spectrum $E = -2\cos k$

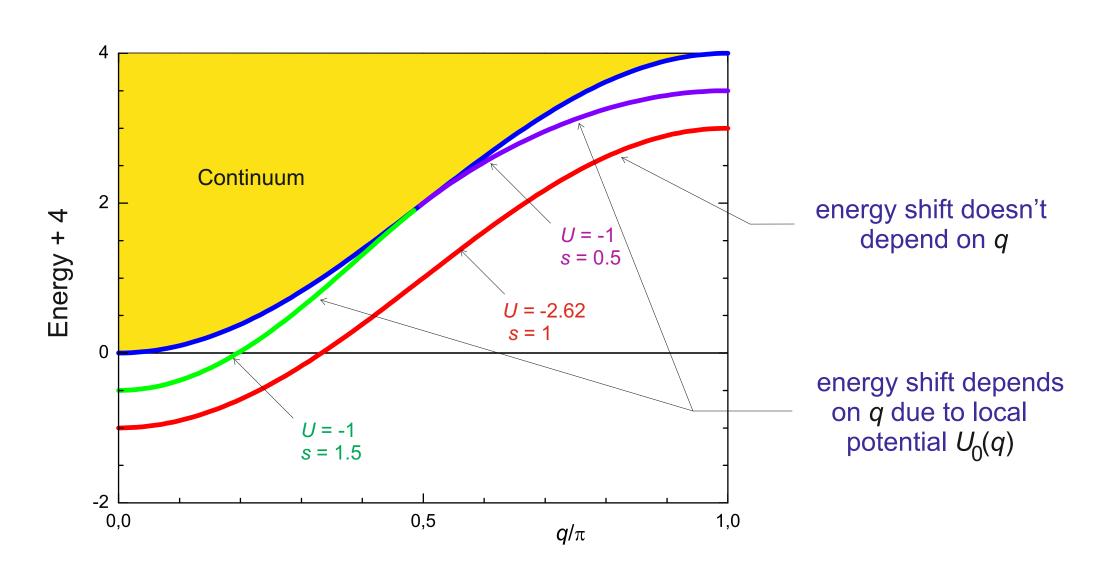
Edge state:
$$k \to i\kappa$$
 \longrightarrow $u_n = e^{-\kappa n}$

Satisfying B.c. we obtain $U=-\mathrm{e}^{\kappa}$ and edge state energy

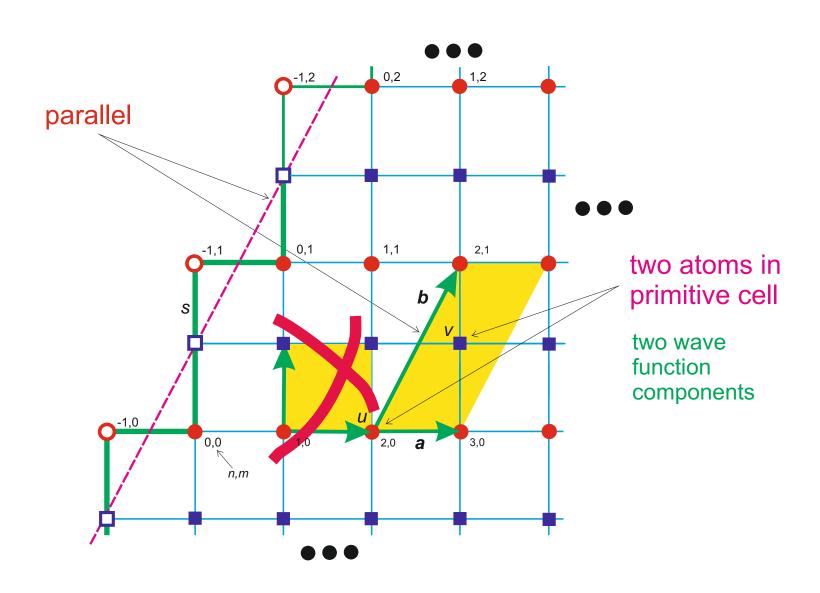
$$E = U + 1/U$$
 if $U < -1$

SPECTRUM

in the case of the most symmetric edge



TILTED EDGE



$2D \rightarrow 1D$

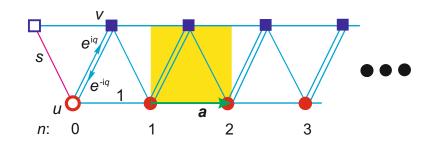
Translation along the edge suggests the following

solution of 2D lattice problem

$$\begin{pmatrix} u_{n,m} \\ v_{n,m} \end{pmatrix} = e^{iqm} \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

Eqs.
$$\left\{ \begin{array}{ll} Eu_n & = & -\left(u_{n-1} + u_{n+1} + \mathrm{e}^{-\mathrm{i}q}v_n + v_{n-1}\right), & n \geqslant 1; \\ Ev_n & = & -\left(v_{n-1} + v_{n+1} + u_{n+1} + \mathrm{e}^{\mathrm{i}q}u_n\right), & n \geqslant 0; \\ (E - U)u_0 & = & -\left(u_1 + \mathrm{e}^{-\mathrm{i}q}v_0 + sv_{-1}\right), \\ (E - V)v_{-1} & = & -\left(v_0 + su_0\right) \end{array} \right.$$
 B.cond.

Effective 1D chain problem



BETHE ANSATZ

Eqs. can be satisfied with
$$\psi_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix} = \mathrm{e}^{\mathrm{i} k n} \begin{pmatrix} u \\ v \end{pmatrix}$$

what leads to spectrum
$$E_{\pm} = -2 \cos k \pm 2 \cos \{(k-q)/2\}$$

Two momenta $k \to \xi + i\kappa$, $\kappa > 0$

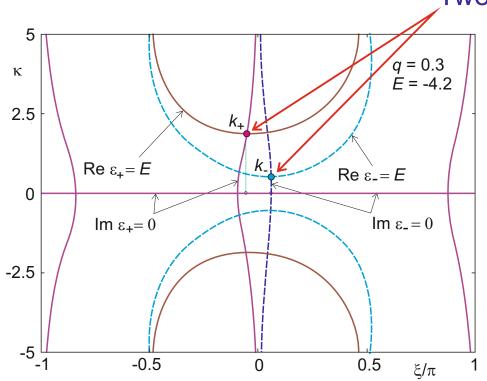
in the case of given energy *E*<-4.

Using the superposition

$$\begin{pmatrix} u_+ \\ v_+ \end{pmatrix} e^{\mathrm{i}k_+ n} + A \begin{pmatrix} u_- \\ v_- \end{pmatrix} e^{\mathrm{i}k_- n}$$

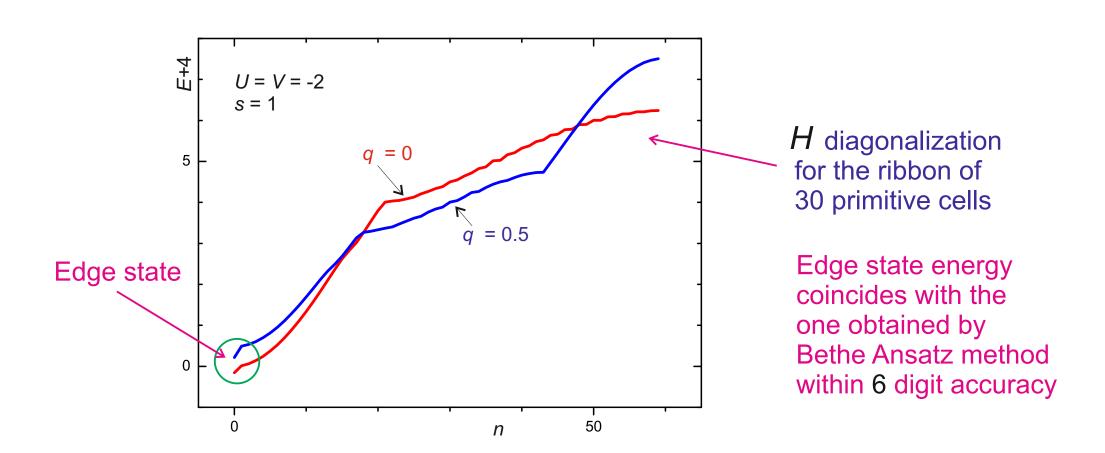
we have to satisfy 4 real B.cond equations with only 3 parameters: Re A, Im A and E.

We managed to do that, proving that the Bethe Ansatz works in this tilted edge case.



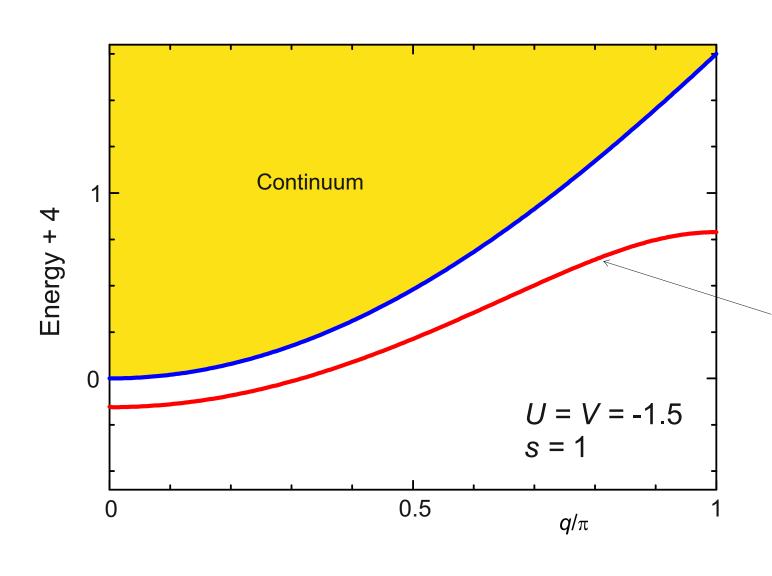
NUMERICAL CHECK

1D chain equations in matrix format: $(H - E) \begin{pmatrix} u \\ v \end{pmatrix} = 0$



SPECTRUM

in the case of the tilted edge



energy shift depends on q due to the coupling of parallel and perpendicular motions

CONCLUSIONS

- Edge breaks the translation symmetry
- Enlarging the primitive cell one can restore the translation symmetry along the edge
- That enables to reduce the 2D problem to 1D one, although by enlarging the number of wave function components
- The 1D problem can be solved by Bethe Ansatz, because the edge breaks the translation symmetry only locally

European Social Fund under the Global Grant measure (grant no. VP1-3.1-ŠMM-07-K-02-046)